If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-15=-6x
We move all terms to the left:
x^2-15-(-6x)=0
We get rid of parentheses
x^2+6x-15=0
a = 1; b = 6; c = -15;
Δ = b2-4ac
Δ = 62-4·1·(-15)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-4\sqrt{6}}{2*1}=\frac{-6-4\sqrt{6}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+4\sqrt{6}}{2*1}=\frac{-6+4\sqrt{6}}{2} $
| 1/9(3t-5)=t+5/18 | | 1-x+3x=9 | | j+67=180 | | 4x=2x+20-6 | | 2x-1=(-3) | | 4b–9b–13–6+16b=1–8+6b+5b–12 | | y÷7-6=6 | | 1.5/3=y/10 | | F(x)=9x-10^6x+18 | | 5(4-2l)=7(3+l) | | 3/5=q/5 | | 38+f=180 | | F(x)=10/5x-3 | | 2(5x+12)=2x-3 | | 4x^2-3=x^2-7x | | 5x+1+62=18x+11 | | 3x-15=7+12x | | (3y/4)-(y/5)=6 | | |x-π^2|=1/2 | | 9x-10+83=127 | | n=34.1=7.2 | | 10-x/5=-5 | | 5/2+2m/7=53/14 | | n+3.41=7.2 | | -60=-3k | | 3k+15=16 | | |y-8|+6=15 | | 4z+5=9z-41 | | k14+4k=2−2k | | f(6)=3-9 | | 9x-10-83=127 | | n+5n=7=43 |